\(A=4x^2+x+10\)
\(=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{4}+\frac{1}{16}+\frac{159}{16}\)
\(=\left(2x+\frac{1}{4}\right)^2+\frac{159}{16}\)
Vì \(\left(2x+\frac{1}{4}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(2x+\frac{1}{4}\right)^2+\frac{159}{16}>0\)với mọi x
\(B=x-x^2-20=-\left(x^2-x+\frac{1}{4}\right)-\frac{79}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{79}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\)với mọi x
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{79}{4}\le0\)với mọi x