\(C+2B=A\\ \Rightarrow C=A-2B\\ \Rightarrow C=\left(4x^2-5xy+3y^2\right)-2\left(3x^2+2xy-y^2\right)\\ \Rightarrow C=4x^2-5xy+3y^2-6x^2-4xy+2y^2\\ \Rightarrow C=-2x^2-9xy+5y^2\)
Ta có: \(C+2B=A\)
\(\Rightarrow C+2.\left(3x^2+2xy-y^2\right)=4x^2-5xy+3y^2\)
\(\Rightarrow C+6x^2+4xy-2y^2=4x^2-5xy+3y^2\)
\(\Rightarrow C=\left(4x^2-6x^2\right)+\left(2y^2+3y^2\right)+\left(-4xy-5xy\right)\)
\(\Rightarrow C=-2x^2+5y^2-9xy\)