Ta có ; A = 3 + 32 + ..... + 3100
=> 3A = 32 + 33 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> A = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)
a﴿ 3S=3^2+3^3+3^4+...+3^101
=>3S‐S=﴾3^2+3^3+3^4+..+3^101﴿‐﴾3+3^2+3^3+...+3^100﴿
=>2S=3^101‐3 =>2S+3=3^101‐3+3=3^101
=>đpcm
Vậy kp bài này là 1