Ta có:
Do \(2^2>1.2\) ; \(3^2>2.3\) ;...; \(9^2>8.9\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< 1-\dfrac{1}{9}< 1\) (1)
Lại có: \(2^2< 2.3\) ; \(3^2< 3.4\) ;...; \(9^2< 9.10\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\) (2)
(1);(2) \(\Rightarrow\dfrac{2}{5}< A< 1\)