Cho: A=1/2+(1/2)2+(1/2)3 +(1/2)4+......+(1/2)2013+(1/2)2014. Chứng tỏ A < 1
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
CHỨNG TỎ : A<-1/2
S=1+2014+2014^2+2014^3+....+21014^2013
a,chứng tỏ Schia hết cho 2015
b,tìm n là số tự nhiên để 2013S+1= 2014^2n+2
Biết:n!=1.2.3....n
Chứng tỏ rằng :A=1/2!+2/3!+...+2013/2014!<1
Mình sẽ tick cho
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)\)
Hãy chứng tỏ A<-1/2
Thực hiện tính :
a) A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/2013(1+2+3+..+2013)
b) B = 1-3/7.3+2-4/2.4+3-5/3.5+4-6/4.6+....+2011-2013/2011.2013+2012-2014/2012.2014-2013+2014/2013.2014
Chứng tỏ:
a) \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)\left(1+\frac{1}{2^4}\right)....\left(1+\frac{1}{2^{50}}\right)< 3\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
d) \(\frac{1}{2}-\frac{1}{2^2}+.............+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
Cho A = 3^2016 - 3^2015 + 3^2014 - 3^2013 + ... + 3^2 - 3 + 1
Chứng tỏ 4A - 1 là lũy thừa của 3 .
Chứng tỏ:
a) \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)\left(1+\frac{1}{2^4}\right)...\left(1+\frac{2}{50}\right)< 3\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
d) \(\frac{1}{2}-\frac{1}{2^2}+.........+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)