\(A=1+3+3^2+3^3+3^4+...+3^{100}-3^{101}\div2+5\)
\(3A=3+1+3+3^2+3^3+...+3^{100}\div2+5\)
\(3A-A=\left(1+3+3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+1+3+3^2+3^3+...+3^{100}\right)\div2+5\)
\(2A=1+3+3^2+3^3+3^4+...+3^{100}+3^{101}-3-1-3-3^2-3^3-...-3^{100}\div2+5\)
\(2A=3-3^{101}\div2+5\)
\(2A=3-3^{101}\div2^{101}+5\)
\(2A=3-1+5\)
\(2A=7\)
\(\Rightarrow A=14\)