\(\left|9+x\right|=2x\left(đk:x\ge0\right)\)
\(\Leftrightarrow9+x=2x\)
\(\Leftrightarrow x=9\)
\(|9+x|=2x\)
<=> \(\left[{}\begin{matrix}9+x=2x\\9+x=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
I 9+xI = 2x
=> Th1 : 9 + x = 2x
⇔ x-2x = -9
⇔ -x = -9
⇔ x= 9
TH2 I9 +xI = -2x
⇔ x +2x = -9
⇔ 3x = -9
⇔ x = -3
Vậy ...