Lời giải:
$9x^2-1+(3x-1)(x+2)=0$
$\Leftrightarrow (3x-1)(3x+1)+(3x-1)(x+2)=0$
$\Leftrightarrow (3x-1)(3x+1+x+2)=0$
$\Leftrightarrow (3x-1)(4x+3)=0$
$\Leftrightarrow 3x-1=0$ hoặc $4x+3=0$
$\Leftrightarrow x=\frac{1}{3}$ hoặc $x=\frac{-3}{4}$
9x2 - 1 + (3x - 1)(x + 2) = 0
\(\Leftrightarrow\) 9x2 - 1 + 3x2 + 6x - x - 2 = 0
\(\Leftrightarrow\) 12x2 + 5x - 3 = 0
\(\Leftrightarrow\) 12x2 - 4x + 9 x - 3 = 0
\(\Leftrightarrow\) (12x2 - 4x) + (9x - 3) = 0
\(\Leftrightarrow\) 4x(3x - 1) + 3(3x - 1) = 0
\(\Leftrightarrow\) (3x - 1)(4x + 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}3x-1=0\\4x+3=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
S = \(\left\{\dfrac{1}{3},\dfrac{-3}{4}\right\}\)