Cho A= 7+7^2+7^3+7^4+.....+7^4k (k thuộc N*). Chứng minh: A chia hết 400
CMR:
a)8^7-2^18 chia hết cho 14
b)10^6-5^7 chia hết cho 59
c)313^5*299-313^6*35 chia hết cho 7
d)3^n+2-2^n+2+3^n-2^n chia hết cho 10
e)3^n+3+2^n+3+3^n+1+2^n+2 chia hết cho 6
f)7^6+7^5-7^4 chia hết cho 11
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
Bài 1: chứng minh rằng
a) 7^6 + 7^5 - 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Bài 2: Tìm n thuộc N biết
a) 5^n ( 1+5^2) = 650
b) 32^-n * 16^n = 1024
c) 3^-1 * 3^n + 5 * 3^n-1 = 162
d) 9 * 27^n = 3^5
e) ( 2^3 : 4 ) * 2^n = 4
f) 3^-2 * 3^4 * 3^n = 3^7
chứng minh rằng: 79+78-77+76+75-74+73+72-7 chia hết cho 55
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1
Chứng tỏ rằng 7+7^2+7^3+7^4+...+7^2014 chia hết cho 8
5) (3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) 6) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
7) (5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) 8) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 pls help me
chứng tỏ rằng D=7^1+7^2+7^3+7^4+.............+7^4n-1+7^4n chia hết cho 400