\(\frac{7}{2\cdot7}+\frac{7}{7\cdot12}+\frac{7}{12\cdot17}+...+\frac{7}{102\cdot107}\)
\(=\frac{7}{5}\left(\frac{5}{2\cdot7}+\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+...+\frac{5}{102\cdot107}\right)\)
\(=\frac{7}{5}\cdot\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+..+\frac{1}{102}-\frac{1}{107}\right)\)
\(=\frac{7}{5}\left(\frac{1}{2}-\frac{1}{107}\right)\)
Bạn tính tiếp nhé