\(\left(5x-3\right)\left(4-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-3=0\\4-2x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}5x=3\\2x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=2\end{matrix}\right.\) Vậy \(x\in\left\{\dfrac{3}{5};2\right\}\)
\(\left[{}\begin{matrix}\left(5x-3\right)=0\\\left(4-2x\right)=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=0+3\\2x=4-0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=3\\2x=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\div5\\x=4\div2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=2\end{matrix}\right.\)