Ta có \(:\) \(\frac{55}{8}=\frac{55\times9}{8\times9}=\frac{495}{72}\)\(^{\left(1\right)}\)
\(\frac{71}{9}=\frac{71\times8}{9\times8}=\frac{568}{72}\)\(^{\left(2\right)}\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\frac{495}{72}< x< \frac{568}{72}\)
\(\Rightarrow x=\frac{496}{72},\frac{497}{72},\frac{498}{72},...,\frac{567}{72}\)
Vậy \(x=\frac{496}{72},\frac{497}{72},\frac{498}{72},...,\frac{567}{72}\)