Bài 1 :
(m + n).(m - n) = m2 + n2
Mà 15749 không phải tổng của hai số chính phương (vì có tận cùng là 49)
Vậy không tồn tại 2 óố tự nhiên m,n
Bài 1 :
(m + n).(m - n) = m2 + n2
Mà 15749 không phải tổng của hai số chính phương (vì có tận cùng là 49)
Vậy không tồn tại 2 óố tự nhiên m,n
1.Có hay không 2 số tự nhiên m,n để: (m+n).(m-n)=15749
2.có bao nhiêu số chia hết cho 19 nằm trong khoảng 30 đến 10000
3. Tim ab để 12a5b chia hết 2;9 và 5 dư 2
4.Chứng tỏ rằng A=(1001.n+110).(301.n+31)chia hết cho 2 với n là một số tự nhiên
4.Chứng tỏ rằng A=(1001.n+110).(301.n+31)chia hết cho 2 với n là một số tự nhiên
1.Có hay không 2 số tự nhiên m,n để: (m+n).(m-n)=15749
1. Cho A là tổng các số lẻ có 2 chữ số: 11+13+15+.....+99. Không tính giá trị của A, hãy cho biết A là số chẵn hay số lẻ.
2. Chứng tỏ rằng với mọi số tự nhiên n thì n mũ 2+n+1 không chia hết cho 5
3. Chứng tỏ rằng số a=9 mũ 11 +1 chia hết cho cả 2 và 5
4.Chứng tỏ rằng tích n(n+3) là số chẵn với mọi số tự nhiên
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Chứng tỏ rằng
a, Chứng tỏ rằng trong 5 số tự nhiên liên tiếp có một số chia hết cho 3
b, Chứng tỏ rằng (9m+1) (9m+2) (9m+3) (9m+4) chia hết cho 5 với mọi n thuộc N
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
câu 1 có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 5 dư 3
câu 2 :chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
câu 3 : gọi A= n^2 +n+1 (n thuộc N ) .chứng tỏ rằng :
a. A không chia hết cho 2
b . A không chia hết cho 5