gọi 4 số lẻ đó là :\(a_1,a_{ }_2,a_3,a_{ }_4\), và UCLN CỦA CHÚNG LÀ d (d lẻ)
\(=>a_1+a_2+a_3+a_4\)chia hết cho d
\(=>202\)chia hết cho d
\(=>d\)thuộc UCLN(202)
Mà UCLN(202)={1;2;101;202}
Nếu d=101 thì \(a_1,a_{ }_2,a_3,a_4\)đều k nhỏ hơn 101
=> tổng 4 số đó lớn hơn 202
\(=>d=1\)
=> 4 số đó là 4 số nguyên tố cùng nhau
Gọi 4 số đó là a; b; c; d và ƯCLN của chúng là d sao cho d là số lẻ
Ta có : 202 chia hết cho d => d thuộc Ư(202)
Có : Ư(202) = 1; 2; 101; 202
(+) d = 2; 202 ( loại ) vì d phải là số lẻ
(+) d = 101 => a; b; c; d lớn hơn hoặc bằng 101
=> a + b + c + d > 202 ( loại )
Vậy d = 1 => a; b; c; d là các số nguyên tố cùng nhau
Ủng hộ mik nha :))