Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngọc_nè

4) Cho tam giác ABC cân tại A ( A < 90độ), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh tam giác AED cân

c) Chứng minh AH là đường trung trực của ED.

Đỗ Thị Dung
5 tháng 5 2019 lúc 20:54

a) xét 2 tam giác vuông ABD và ACE có:

              AB=AC(gt)

             \(\widehat{A}\)chung

=> tam giác ABD=tam giác ACE(CH-GN)

b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE

=> tam giác AED cân tại A

c) ta thấy H là trực tâm của tam giác cân ABC

=> \(\widehat{BAH}\)=\(\widehat{CAH}\)

gọi O là giao điểm của AH và ED

xét tam giác AOE và tam giác AOD có:

          AE=AD(tam giác AED cân)

          \(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)

         AO chung

=> tam giác AOE=tam giác AOD(c.g.c)

=> OE=OD=> O là trung điểm của ED(1)

\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)

từ (1) và (2) => AH là trung trực của ED

A B C D E H O

_uynthu_
5 tháng 5 2019 lúc 21:03

a) Xét tam giác ABD và tg ACE có:

                D^ = E^ = 90độ (gt)

                A là góc chung

                AB = AC ( do tam giác ABC cân tại A)

    => tam giác ABD = tam giác ACE (ch-gn)

b) Vì AD = AE ( tg ABD = tg ACE)

        => tg AED cân tại A.

c) Vì AD = AE (cmt)

       => A thuộc đường trung trực của ED.

    Xét tg AEH và tg ADH có:

            E^ = D^ = 90độ (gt) 

            AD = AE (cmt)

            AH cạnh huyền chung.

       => tg AEH = tg ADH (ch-cgv)

       => HE = HD.

       => H thuộc đường trung trực của ED.

       => AH là đường trung trực của  ED.


Các câu hỏi tương tự
hoang minh nguyen
Xem chi tiết
Thái Thanh Vân
Xem chi tiết
Hang Nguyen
Xem chi tiết
Dương Trần Nhật
Xem chi tiết
Nguyễn ĐÌnh Thạch Lam
Xem chi tiết
H
Xem chi tiết
Linh Nguyễn Ngọc
Xem chi tiết
Phong
Xem chi tiết
Nguyễn Thị Hương Giang
Xem chi tiết