Đặt : \(A=\dfrac{4}{8\times11}+\dfrac{4}{11\times14}+...+\dfrac{4}{296\times299}\)
\(\dfrac{3\times A}{4}=\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{3}{296\times299}\\ =\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{296}-\dfrac{1}{299}\\ =\dfrac{1}{8}-\dfrac{1}{299}\\ A=\left(\dfrac{1}{8}-\dfrac{1}{299}\right)\times4:3=\dfrac{97}{598}\)
Ta đặt
\(A=\dfrac{4}{8\times11}+\dfrac{4}{11\times14}+....+\dfrac{4}{296\times299}\)
\(\dfrac{3}{4}A=\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+....+\dfrac{3}{296\times299}\)
\(\dfrac{3}{4}A=\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+....+\dfrac{1}{296}-\dfrac{1}{299}\)
\(\dfrac{3}{4}A=\dfrac{1}{8}-\dfrac{1}{299}=\dfrac{291}{2392}\)
\(A=\dfrac{291}{2392}\div\dfrac{3}{4}\)
\(A=\dfrac{97}{598}\)