1/\(\left|3x+2\right|+\left|9x^2-4\right|=0\)
<=> \(\hept{\begin{cases}\left|3x+2\right|=0\\\left|9x^2-4\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}3x+2=0\\9x^2-4=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{2}{3}\\x=\frac{2}{3}\end{cases}}\)
<=> \(x\in\varnothing\)
2/ \(\left|x-5\right|+\left|x-25\right|=0\)
<=> \(\hept{\begin{cases}\left|x-5\right|=0\\\left|x-25\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=5\\x=25\end{cases}}\)
<=> \(x\in\varnothing\)
3/ \(\left|2x\right|-\left|-3,5\right|=\left|-6,5\right|\)
<=> \(\left|2x\right|-3,5=6,5\)
<=> \(\left|2x\right|=10\)
<=> \(2x=\pm10\)
<=> \(x=\pm5\)
4/ \(\frac{5}{3}-\left|x-\frac{1}{3}\right|=\frac{1}{3}\)
<=> \(-\left|x-\frac{1}{3}\right|=-\frac{4}{3}\)
<=> \(\left|x-\frac{1}{3}\right|=\frac{4}{3}\)
<=> \(\orbr{\begin{cases}x-\frac{1}{3}=\frac{4}{3}\\x-\frac{1}{3}=-\frac{4}{3}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
l3x + 2l +l9x2 - 4l = 0
=> l3x + 2l =0 hoặc l9x2-4l =0
=> 3x + 2 = 0 9x2-4 =0
=> 3x = -2 9x2 =4
=> x = -2:3 x2 = 4:9
=> x = -2/3 x2 =4/9
=> x =2/3
Vậy x ={-2/3 ; 2/3}
câu 2 là tương tự