Tìm x,y nguyên thỏa mãn \(3x^2+6x+4y^2+3y-4=0\)
Tìm x,y nguyên thỏa mãn \(3x^2+6x+4y^2+3y-4=0\)
@Ai đó:v
Tìm min của 2x^2 + y^2 +z^2 biết xy + yz + zx = 1 và x, y, z > 0
Cách của em như sau(ko chắc đâu nhé, cách này em mới nghĩ ra thôi): Ta cho k >0thỏa mãn \(A\ge k\left(xy+yz+zx\right)\)
Hay
\(2x^2-x\left(ky+kz\right)+y^2-kyz+z^2\ge0\)
Có:\(VT=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)y^2-\left(2k^2+8k\right)yz+\left(8-k^2\right)z^2}{8}\)
\(=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)\left(y-\frac{\left(2k^2+8z\right)z}{2\left(8-k^2\right)}\right)^2+\frac{z^2}{4}\left[4\left(8-k^2\right)-\frac{\left(2k^2+8k\right)^2}{8-k^2}\right]}{8}\)
Bây giờ để bđt là luôn đúng thì \(8-k^2\ge0\) và \(4\left(8-k^2\right)=\frac{\left(2k^2+8k\right)^2}{8-k^2}\)
Ngay lập tức ta thấy \(k=\sqrt{5}-1\)
Từ đó..
Vì vai trò của x,y,z là như nhau nên ta đặt: \(0\le x\le y\le z\le1\)
Ta có:\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)
Ta lại có: \(0\le x\le1;0\le y\le1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow xy-x-y+1\ge0\)
\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)
Từ (2);(1) và \(z\le1\) suy ra: \(\frac{x+y+z}{xy+1}\le\frac{\left(xy+1\right)+1}{xy+1}\le\frac{2xy+2}{xy+1}=2\)
@Vanan Vuong : Tìm m để pt (x-7)(x-6)(x+2)(x+3) = m có 4 nghiệm phân biệt t/m \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
\(Pt:\left(x-7\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left[\left(x-7\right)\left(x+3\right)\right]\left[\left(x-6\right)\left(x+2\right)\right]=m\)
\(\Leftrightarrow\left(x^2-4x-21\right)\left(x^2-4x-12\right)=m\)(1)
Đặt \(\left(x-2\right)^2=a\left(a\ge0\right)\)
\(\Rightarrow a=x^2-4x+4\)
Như vậy , vs mỗi giá trị của a , ta tìm được nhiều nhất 2 giá trị của x
\(Pt\left(1\right)\Leftrightarrow\left(a-26\right)\left(a-16\right)=m\)
\(\Leftrightarrow a^2-42a+416=m\)
\(\Leftrightarrow a^2-42a+416-m=0\)(2)
Để pt ban đầu có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}441-416+m>0\\42>0\left(Luonđung\right)\\416-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-25\\m< 416\end{cases}}\Leftrightarrow-25< m< 416\)
Khi đó theo hệ thức Vi-ét \(\hept{\begin{cases}a_1+a_2=42\\a_1a_2=416-m\end{cases}}\)
Với giá trị của m vừa tìm đc ở trên thì mỗi giá trị a1 và a2 sẽ nhận 2 giá trị của x
Giả sử a1 nhận 2 nghiệm x1 và x2 còn a2 nhận 2 nghiệm x3 và x4 (đoạn này ko hiểu ib nhá)
*Xét a1 nhận x1 và x2
Khi đó phương trình \(a_1=x^2-4x+4\) sẽ nhận 2 nghiệm x1 và x2
\(pt\Leftrightarrow x^2-4x+4-a_1=0\)(Đoạn này ko cần Delta nữa vì mình đã giả sử có nghiệm rồi)
Theo hệ thức Vi-ét \(\)\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=4-a_1\end{cases}}\)
*Xét a2 nhận x3 và x4
Tương tự trường hợp trên ta cũng đc \(\hept{\begin{cases}x_3+x_4=4\\x_3x_4=4-a_2\end{cases}}\)
Ta có \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=4\)
\(\Leftrightarrow\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=4\)
\(\Leftrightarrow\frac{4}{4-a_1}+\frac{4}{4-a_2}=4\)
\(\Leftrightarrow\frac{1}{4-a_1}+\frac{1}{4-a_2}=1\)
\(\Leftrightarrow\frac{4-a_2+4-a_1}{\left(4-a_1\right)\left(4-a_2\right)}=1\)
\(\Leftrightarrow\frac{8-\left(a_1+a_2\right)}{16-4\left(a_1+a_2\right)+a_1a_2}=1\)
\(\Leftrightarrow\frac{8-42}{16-4.42+416-m}=1\)
\(\Leftrightarrow\frac{-34}{264-m}=1\)
\(\Leftrightarrow-34=264-m\)
\(\Leftrightarrow m=298\)(Thỏa mãn)
Tính toán có sai sót gì thì tự fix nhá :V
a,\(8x^3-12x^2+6x-5=0\Leftrightarrow8\left(x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\right)-4=0\)
\(\Leftrightarrow8\left(x-\frac{1}{2}\right)^3=4\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt[3]{2}}+\frac{1}{2}\)
\(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
\(VP=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\le\frac{a+b}{2}\sqrt{2\left(a+b\right)}\)\(\Rightarrow\)\(VP^2\le\frac{\left(a+b\right)^3}{2}\) (1)
chứng minh bổ đề: \(VT^2=\left(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\right)^2\ge\frac{\left(a+b\right)^3}{2}\)
\(\Leftrightarrow\)\(\frac{\left(a+b\right)^4}{4}+\frac{\left(a+b\right)^2}{16}+\frac{\left(a+b\right)^3}{4}\ge\frac{\left(a+b\right)^3}{2}\)
\(\Leftrightarrow\)\(\left(a+b\right)^4+\frac{\left(a+b\right)^2}{4}\ge\left(a+b\right)^3\)
Có: \(\left(a+b\right)^4+\frac{\left(a+b\right)^2}{4}\ge2\sqrt{\frac{\left(a+b\right)^6}{4}}=\left(a+b\right)^3\)\(\Rightarrow\)\(VT^2\ge\frac{\left(a+b\right)^3}{2}\) (2)
(1) và (2) => \(VT^2\ge VP^2\) => \(VT\ge VP\) ( đpcm )
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(
Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)
Cần chứng minh
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)
ta có \(\sqrt[3]{6x+1}=2x\Rightarrow8x^3=6x+1\Leftrightarrow8x^3-6x-1=0\) (*)
đặt \(x=t+\frac{1}{4t}\)
=> PT (*) <=>\(8\left(t+\frac{1}{4t}\right)^3-6\left(t+\frac{1}{4t}\right)-1=0\)
<=>\(8t^3+\frac{1}{8t^3}-1=0\Leftrightarrow64t^6-8t^3+1=0\Leftrightarrow\left(8t^3-\frac{1}{2}\right)^2+\frac{3}{4}=0\) (vô nghiệm )
\(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a+b+c\ge\sqrt{3}\\a^2+b^2+c^2\ge1\end{cases}}\)
\(\left(a-\frac{1}{\sqrt{3}}\right)^2\ge0\)\(\Leftrightarrow\)\(a\le\frac{\sqrt{3}}{2}a^2+\frac{\sqrt{3}}{6}\)
\(P=\Sigma\frac{a^2\left(1-2b\right)^2}{b\left(1-2b\right)}\ge\frac{\left(a+b+c-2\right)^2}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{\left(a+b+c-2\right)^2}{\frac{\sqrt{3}-4}{2}\Sigma a^2+\frac{\sqrt{3}}{2}}\ge\sqrt{3}-2\)