\(\dfrac{3x-2}{2-3x}+\dfrac{1}{6}=\dfrac{5}{3+2x}\)\(\left(DKXD:x\ne-\dfrac{3}{2};\dfrac{2}{3}\right)\)
\(\Rightarrow\dfrac{3x-2}{2-3x}+\dfrac{1}{6}-\dfrac{5}{3+2x}=0\)
\(\Rightarrow\dfrac{6\left(9x^2-4\right)+\left(2-3x\right)\left(3+2x\right)-30\left(2-3x\right)}{6\left(2-3x\right)\left(3+2x\right)}=0\)
\(\Rightarrow54x^2-24+6+4x-9x-6x^2-60+90x=0\)
\(\Rightarrow48x^2+85x-78=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{2}{3}\left(l\right)\\x_2=-\dfrac{39}{16}\left(n\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{39}{16}\right\}\)