Đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Rightarrow A=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt \(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow S=2-\frac{1}{2^9}\)
Mà \(A=3.S\)
\(\Rightarrow A=3.\left(2-\frac{1}{2^9}\right)\)
\(\Rightarrow A=6-\frac{3}{2^9}\)
Chúc bạn học tốt !!!