\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+...+\frac{3}{10300}\)
\(=\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{100\times103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}=\frac{102}{103}\)