3 3 3 = 0
3 3 3 = 1
3 3 3 = 2
3 3 3 = 3
3 3 3 = 4
3 3 3 = 5
3 3 3 = 6
3 3 3 = 7
3 3 3 = 8
3 3 3 = 9
3 3 3 = 10
Make each questions true (=) using mathematical operations.
Crazy hard bonus:Find two answers for 3 3 3=10 using only the following symbols: +;!;()
Tính:
\(\sqrt{3+\sqrt{3}+\sqrt{3+\sqrt{3}+\sqrt{3+\sqrt{3}+\sqrt{3+\sqrt{3}+\sqrt{3+\sqrt{3}+\sqrt{3+\sqrt{3}\sqrt{4+2\sqrt{3}}}}}}}}\)
B 2. Thực hiện phép tính
a)\(\dfrac{\sqrt[3]{384}}{\sqrt[3]{3}}\)+\(3\sqrt[3]{-54}\)+\(\sqrt[3]{432}\) b)\(2\sqrt[3]{24}-5\sqrt[3]{81}+4\sqrt[3]{192}\)
c)\(\sqrt[3]{-343}.\sqrt[3]{3}+\sqrt[3]{81}-2\sqrt[3]{-24}\) d)\(8\sqrt[3]{5}-5\sqrt[3]{40}+10\sqrt[3]{\dfrac{1}{125}}\)
Chứng minh rằng
\(\dfrac{1}{26.2^3-4^3-0^3}+\dfrac{1}{26.3^3-5^3-1^3}+\dfrac{1}{26.4^3-6^3-2^3}+...+\dfrac{1}{26.2020^3-2022^3-2018^3}< \dfrac{1}{96}\)
tính chính xác các giá trị biểu thức sau A= (1^3 * 2^3) : 3 + (2^3 * 3^3) : 5 + (3^3 * 4^3) : 7 +...+(99^3*100^3) : 199
rút gọn :
A=(3+√5)/(√10+√3+√5)-(3-√5)/(√10-√3-√5)
B= (√3-3)/[√(2-√3)]+(√3+3)/[√(2+√3)-2√2]
Tính kết quả đúng phép tính sau: 2001^3 + 2002^3 + 2003^3 + 2004^3 + 2005^3 + 2006^3 + 2007^3 + 2008^3 + 2009^3
chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}<2\sqrt[3]{3}\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Tính:\(M=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}\)