Chứng minh rằng:
a) A=1/3+1/(3^2)+1/(3^3)+...+1/(3^99)<1/2
b) B=3/(1^2*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+19/(9^2*10^2)<1
c) C=1/3+2/(3^2)+3/(3^3)+4/(3^4)+...+100/(3^100)<3/4
a, Cho biết: \(1^2+2^2+3^2+...+10^2=385\)
Tính A= \(3^2+6^2+9^2+...+30^2\)
b, Cho biết: \(1^3+2^3+3^3+...+10^3=3025\)
Tính B= \(2^3+4^3+6^3+...+20^3\)
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
cmr: 3/2-(3/2)2+(3/2)2-(3/2)3+...-(3/2)2012+(3/2)2013-(3/2)2014<3/5
5) (3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) 6) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
7) (5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) 8) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 pls help me
(3-1/4+2/3) - (5-1/3-6/5) - (6-7/4+3/2) (6-2/3+1/2) - (5+5/3-3/2)-(3-7/3+5/2)
(5/3-3/7+9)-(2+5/7-2/3)+(8/7-4/3-10) (8-9/4+2/7)-(-6-3/7+5/4)-(3+2/4-9/7 )
mọi người ơi giúp mik với ạ
1)1+a+a^2+.......+a^n
2)1^2+2^2+3^2+4^2+.......+n^2
3)1^3+2^3+3^3+4^3+....+n^3
tính: C=((1^3+2^3+3^3+...+10^3).(x^2+y^2)(x^3+y^3)(x^4+y^4))/(1^2+2^2+3^2+...+10^2) với x=-0,(3) và y=1/3
So sánh
a, 1/3 + 1/3^2 + 1/3^3 +....+ 1/3^99 + 1/3^100 và 1/2
b, 3/1^2*2^2 + 5/2^2 *3^2 +7/3^2*4^2 +......+ 19/9^2*10^2 và 1
Bài 1: Thực hiện phép tính.
A) 3: ( -1/2 )2 + 1/9 x Căn 36
B) 81 x ( 1/3)3 + 1/3
C) Căn 12 + Căn 27 - Căn 3
D) -32 - ( 1/2)-2 : 2 + (2/3)0 : (3/4)-1
E) 3/4 - ( -1/2 )2
F) 15/16 : (-2 2/3) + 15/16 : ( -1 3/5 )
G) 3/5 + -1/4 + 3/20
H) 3: ( -3/2)2 + 1/9 x căn 36
I) 272 x 85/ 66 x 323
J) (0.8)5/ (0.4)6
K) 272/ 242
L) (0.125)3 x 83
M) (-39)4 : 134
N) (0.6)5/ (0.2)6
O) ( 3/7 + 1/2 )2
P) 2:(1/2 - 2/3 )2
Q) 9x (-1/3)3 + 1/3