Ta có ; \(xy\le\frac{\left(x+y\right)^2}{4}=4\)
\(A=x^2+y^2+\frac{33}{xy}=x^2+y^2+2xy-2xy+\frac{32}{xy}+\frac{1}{xy}=\left(x+y\right)^2+\left(2xy+\frac{32}{xy}\right)+\frac{1}{xy}-4xy\ge4^2+2\sqrt{2xy.\frac{32}{xy}}+\frac{1}{4}-4^2=16+\frac{1}{4}=\frac{65}{4}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=4\\xy=4\\x=y\end{cases}\Leftrightarrow x=y=2}\)
Vậy \(MinA=\frac{65}{4}\Leftrightarrow x=y=2\)