Ta có: \(\left\{{}\begin{matrix}p+n=35\\n-p=1\\p=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p=z=17\\n=18\end{matrix}\right.\)
ta có: n + p + e = 35
mà p = e, nên: 2p + n = 35 (1)
Theo đề, ta có: n - p = 1 (2)
Từ (1) và (2), ta có HPT:
\(\left\{{}\begin{matrix}2p+n=35\\n-p=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2p+n=35\\-p+n=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3p=34\\2p+n=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p\approx11\\n=13\end{matrix}\right.\)
=> e = p = Z = 11