\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)
Dấu = tại x = 2
\(B=4x^2+4x+11=4\left(x^2+x+\dfrac{1}{4}\right)+10=4\left(x+\dfrac{1}{2}\right)^2+10\ge0\)
Dấu = tại \(x=\dfrac{-1}{2}\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t=>t=x^2+5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x+\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge\dfrac{-25}{4}\)
\(=>\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
Dấu = tại \(t=0< =>x^2+5x=0< =>\left\{{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=5-8x=x^2=21-16-8x-x^2=21-\left(x+4\right)^2\le21\)
Dấu = tại x = - 4
\(E=4x-x^2+1=5-\left(x-2\right)^2\le5\)
Dấu = tại x = 2