Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Cao Đô

(3 điểm)

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA=a\sqrt{2}$. Các mặt phẳng $\left( SAB \right)$ và $\left( SAD \right)$ cùng vuông góc với mặt phẳng $\left( ABCD \right)$. Gọi $N$ là trung điểm cạnh $CD$.

a. Chứng minh rằng $BC\bot \left( SAB \right)$ và $\left( SAC \right)\bot \left( SBD \right)$.

b. Tính khoảng cách giữa hai đường thẳng $AN$ và $SC$ theo $a$.

Nguyễn Tất Đạt
1 tháng 6 2021 lúc 13:07

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết