3, Cho tam giác ABC vuông tại A , góc B = 53 độ
a, Tính góc C
b, Trên cạnh Bc lấy điểm D sao cho BD = BA , tia phân giác của góc B cắt cạnh AC tại E . Chứng minh tam giac BEA = tam giac BED
c, Qua C vẽ đường thẳng vuông góc với Be tại H . CH cắt đường thẳng AB tại F . Chứng minh tam giác BHF = tam giac BHC
d, Chứng minh tam giác BAC = tam giác BDF và 3 điểm D,F,E thẳng hàng
nói cách làm và vẽ hình nữa nah
a) Ta có : tam giác ABC vuông tại A
=> góc B + góc C = 90\(^o\)
Mà góc B = 53\(^o\)
=> góc C = góc A - góc B
=> góc C = 90\(^o\)- 53\(^o\)
=> góc C = 37\(^o\)
b) Xét tam giác BEA và tam giác BED có :
BD = BA (gt)
BE là cạnh chung
góc ABE = góc DBE ( BE là tia p/giác của góc B)
=> tam giác BEA = tam giác BED
c) Ta có CH vuông góc với BE
=> Tam giác BHC và tam giác BHF là tam giác vuông
Xét tam giác vuông BHF và tam giác vuông BHC có:
BH là cạnh chung
góc FBH = góc HBC ( BE là tia p/giác của góc B)
=> tam giác vuông BHF = tam giác vuông BHC ( cạnh góc vuông + góc nhọn )
=> BF = BC ( 2 cạnh tương ứng ) (*)
d) Xét tam giác BEF và tam giác BEC có :
BF = BC ( theo (*))
góc FBE = góc CBE ( BE là tia p/giác của góc B)
BE là cạnh chung
=> tam giác BEF = tam giác BEC (c . g . c )
=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)
Xét tam giác BAC và tam giác BDF có :
góc BFD = góc BCA ( theo (**))
góc B là góc chung
BA = BD (gt)
=> tam giác BAC = tam giác BDF ( g . c . g )
=> góc FDB = góc CAB ( 2 góc tương ứng )
Xét tam giác BED có : góc EBD + góc BED + góc BDE = 180\(^o\)
Mà :góc FDB = góc CAB = 90\(^o\)
góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)
=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))
=> góc BED = 180\(^o\)- 116,5\(^o\)
=> góc BED = 63,5\(^o\)
Mặt khác : Tam giác BED = tam giác BEA
=> góc AEB = BED = 63,5\(^o\)
Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)
Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)
=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))
=> FEA = 180\(^o\)- 127\(^o\)
=> FEA = 53\(^o\)
Lại có : góc FAD = góc FEA + góc AEB + góc BED
=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)
=> FAD = 180\(^o\)
=> D, F, E thẳng hàng