2x5 - 7x4 + 5x3 + 5x2 - 7x + 2 = 0
<=> 2x5-4x4-3x4+6x3-x3+2x2+3x2-6x-x+2=0
<=> 2x4(x-2)-3x3(x-2)-x2(x-2)+3x(x-2)-(x-2)=0
<=>(x-2)(2x4-3x3-x2+3x-1)=0
<=>(x-2)(2x4-x3-2x3+x2-2x2+x+2x-1)=0
<=>(x-2)[x3(2x-1)-x2(2x-1)-x(2x-1)+2x-1]=0
<=>(x-2)(2x-1)(x3-x2-x+1)=0
<=>(x-2)(2x-1)[x2(x-1)-(x-1)]=0
<=>(x-2)(2x-1)(x-1)(x2-1)=0
<=>(x-2)(2x-1)(x-1)2(x+1)=0
=> x-2=0 => x=2
hoặc 2x-1=0=>x=1/2
hoặc x-1=0=>x=1
hoặc x+1=0=>x=-1
Vậy...
\(2x^5-7x^4+5x^3+5x^2-7x+2=0\)
\(\Leftrightarrow\left(2x^5-4x^4+2x^3\right)-\left(3x^4-6x^3+3x^2\right)-\left(3x^3-6x^2+3x\right)+\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow2x^3\left(x^2-2x+1\right)-3x^2\left(x^2-2x+1\right)-3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(2x^3-3x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^3+2x^2-5x^2-5x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[2x^2\left(x+1\right)-5x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-4x-x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
hoặc \(2x-1=0\)
\(\Leftrightarrow\)\(x=1\)
hoặc \(x=-1\)
hoặc \(x=2\)
hoặc \(x=\frac{1}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1;2;\frac{1}{2}\right\}\)