\(\Leftrightarrow2x^2+2x+x+1=0\)
\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
2x2 + 3x + 1 =0
<=> (2x2 + 2x) + (x + 1) = 0
<=> 2x(x + 1) + (x+1) = 0
<=> (2x+1)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)
KL: x \(\in\left\{\dfrac{-1}{2};-1\right\}\)