a, \(\Leftrightarrow2x^2=72\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm6\)
Vậy ...
\(b,\Leftrightarrow\dfrac{3}{5}x-0,75=2\dfrac{4}{5}.\dfrac{3}{7}=\dfrac{6}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{6}{5}+0,75=\dfrac{39}{20}\)
\(\Leftrightarrow x=\dfrac{39}{20}:\dfrac{3}{5}=\dfrac{13}{4}\)
Vậy ...
\(c,\Leftrightarrow2x=1\dfrac{5}{6}.\dfrac{6}{11}-\dfrac{3}{10}=\dfrac{7}{10}\)
\(\Leftrightarrow x=\dfrac{7}{10}:2=\dfrac{7}{20}\)
Vậy ...
\(d,\Leftrightarrow\dfrac{1}{x-7\dfrac{1}{3}}=1.5:2\dfrac{1}{4}=\dfrac{2}{3}\)
\(\Leftrightarrow x-7\dfrac{1}{3}=\dfrac{3}{2}\)
\(\Leftrightarrow x=\dfrac{3}{2}+7\dfrac{1}{3}=\dfrac{53}{6}\)
Vậy ...
a) 2x2 - 72 = 0
\(\Rightarrow\) 2x2 = 72
\(\Rightarrow\) x2 = 36 = 62 = (- 6)2
\(\Rightarrow\) x = 6 hoặc x = - 6
Vậy x = 6 hoặc x = - 6
b) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(2\dfrac{4}{5}\)
\(\Rightarrow\) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(\dfrac{14}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x - \(\dfrac{3}{4}\) = \(\dfrac{6}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x = \(\dfrac{39}{20}\)
\(\Rightarrow\) x = \(\dfrac{13}{4}\)
Vậy x = \(\dfrac{13}{4}\)
c) \(2x+\dfrac{3}{10}=1\dfrac{5}{6}.\dfrac{6}{11}\)
\(\Rightarrow\) \(2x+\dfrac{3}{10}=\dfrac{11}{6}.\dfrac{6}{11}=1\)
\(\Rightarrow\) \(2x=\dfrac{7}{10}\)
\(\Rightarrow\) \(x=\dfrac{7}{20}\)
Vậy \(x=\dfrac{7}{20}\)
d) \(2\dfrac{1}{4}:\left(x-7\dfrac{1}{3}\right)=1,5\)
\(\Rightarrow\) \(\dfrac{9}{4}:\left(x-\dfrac{22}{3}\right)=\dfrac{3}{2}\)
\(\Rightarrow\) \(x-\dfrac{22}{3}=\dfrac{3}{2}\)
\(\Rightarrow\) \(x=\dfrac{53}{6}\)
Vậy \(x=\dfrac{53}{6}\)