\(2\left(x-2\right)=x^2-4x+4\)
\(2\left(x-2\right)=\left(x-2\right)^2\)
\(2\left(x-2\right)-\left(x-2\right)^2=0\)
\(\left(x-2\right)\left(2-x+2\right)=0\)
\(\left(x-2\right)\left(4-x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\4-x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Lời giải:
$2(x-2)=x^2-4x+4=(x-2)^2$
$\Leftrightarrow (x-2)^2-2(x-2)=0$
$\Leftrightarrow (x-2)(x-4)=0$
$\Rightarrow x-2=0$ hoặc $x-4=0$
$\Rightarrow x=2$ hoặc $x=4$
2 ( x - 2 ) = x^2 - 4x + 4
2 ( x - 2 ) = ( x - 2 )^2
2 ( x - 2 ) - ( x - 2 )^2 = 0
( x - 2 ) ( 2 - x + 2 ) = 0
( x - 2 ) ( 4 - x ) = 0
⇒ x = 2 hoặc x = 4