PT <=> \(2x+\frac{6}{5}=5-\frac{13}{5}-x\)
<=> \(\frac{10x+6}{5}=\frac{25}{5}-\frac{13}{5}-\frac{5x}{5}\)
=> 10x + 6 = 25 - 13 - 5x
<=> 10x + 5x = 25 - 13 - 6
<=> 15x = 6
<=> x = 2/5
Vậy S = {2/5}.
\(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
<=> \(2x+\frac{6}{5}=\frac{12}{5}-x\)
<=> \(3x=\frac{6}{5}\) <=> \(x=\frac{2}{5}\)
BT<=>2x+6/5=5-13/5-x
<=>10x+6/5=25/5-13/5-5x/5
=>10x+6=25-13-5x
10x+5x=25-13-6
(10+5)x=6
15x=6
x=6:15
x=0,4