\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}}\)
Vậy phương trình trên có tập nghiệm \(S=\left\{-\frac{1}{3};-\frac{4}{5}\right\}\)