2^4=16
tick tớ nhé truong thi thanh tuyen
2^4=16
tick tớ nhé truong thi thanh tuyen
Cho A=\(\frac{\left(2^4+\frac{4}{2^4}\right)\left(4^4+\frac{4}{2^4}\right)\left(6^4+\frac{4}{2^4}\right)...\left(32^4+\frac{^4}{2^4}\right)}{\left(1^4+\frac{4}{2^4}\right)\left(3^4+\frac{4}{2^4}\right)\left(5^4+\frac{4}{2^4}\right)...\left(31^4+\frac{4}{2^4}\right)}\) và B =2010. So sánh A và B
1) CM:
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2-2zt+2xz-t^2}{x-y+z-t}\)
2) Rut gon
\(\frac{\left(2^{4+4}\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
1.Chứng minh \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2}{x-y+z-t}-2zt+2xz-t^2\)
2.Rút gọn X= \(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
Cho a+b+c=0 CMR
1. a^4 + b^4 + c^4 = 2( a^2b^2 + b^2c^2 + c^2a^2 )
2. a^4 + b^4 + c^4 = 2( ab + bc + ca )^2
3. a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 /2
Phân tích đa thức thành nhân tử
(x+y)^4 + x^4 + y^4
= [(x+y)^2]^2 + x^4 + y^4
=(x^2 + 2xy + y^2)^2 + x^4 + y^4
=[(x^2 + 2xy) + y^2] ^2 + x^4 + y^4
=( x^4 + 2(x^2 + 2xy)y^2 + y^4) + x^4 + y^4
= (x^4 + 2x^2y^2 + 4xy^3 + y^4) + x^4 + y^4 (*)
= 2x^4 + 2x^2y^2 + 4xy^3 + 2y^4
= 2( x^4 + x^2y^2 + xy^3 + y^4)
Mấy bạn coi thử giùm mk cái dòng thứ (*) mk phân tích đùng chưa ạ... nếu đúng mấy bạn phân tích dùm mk cái dòng cuối nhen
Mấy bạn giúp giùm... mk gấp lắm ạ
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1) Tìm x, y, z biết rằng x^2+y^2+z^2=xy+yz+xz và x^2011+y^2011+z^2011=3^2012
2) Tính A= (1^4+1/4)(3^4+1/4)(5^4+1/4)....(2011^4+1/4) / (2^4+1/4)(4^4+1/4)(6^4+1/4)....(2012^4+1/4)
cho a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.chung minh a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4
Cho a,b,c thỏa mãn a^2+b^2+(a+b)^2=c^2+d^2+(c+d)^2. CM a^4+b^4+(a+b)^4=c^4+d^4+(c+d)^4
\(\frac{\left(1^2+\frac{1}{4}\right)\left(3^2+\frac{1}{4}\right)\left(5^2+\frac{1}{4}\right)..........\left(29^2+\frac{1}{4}\right)}{\left(2^2+\frac{1}{4}\right)\left(4^2+\frac{1}{4}\right)\left(6^2+\frac{1}{4}\right)...........\left(30^2+\frac{1}{4}\right)}\)
tính giá trị biểu thức trên