\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(243^{100}< 343^{100}\Rightarrow3^{500}< 7^{300}\)
Ta có: 2^300 = (2^3)^100 = 8^100
3^200 = (3^2)^100 = 9^100
Mà 8 < 9
=> 2^300 < 3^200
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) .
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)