\(\frac{4036}{6051}-\frac{2}{6051}+\frac{1}{3}\)
\(=1\)
\(\frac{2}{3}\times\frac{2018}{2017}-\frac{2}{3}\times\frac{1}{2017}+\frac{1}{3}\)
\(\frac{4036}{6051}-\frac{2}{6051}+\frac{1}{3}\)
\(=1\)
Code : Breacker
\(\frac{2}{3}.\frac{2018}{2017}-\frac{2}{3}.\frac{1}{2017}+\frac{1}{3}\\= \frac{2}{3}.\left(\frac{2018}{2017}-\frac{1}{2017}+\frac{1}{3}\right)\\= \frac{2}{3}.\left(1+\frac{1}{3}\right)\\ =\frac{2}{3}.\frac{4}{3}\\ =\frac{8}{9}\)