\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\)
= \(\frac{1}{1}-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{1}-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)