`2024x - |1011x+2|=|1012x+3|`
`<=> |1011x+2| + |1012x+3|=2024x`
Vì `{(|1011x+2| >=0),( |1012x+3| >=0):}`
`=>2024x >= 0`
`=>x>=0` nên `:`
` |1011x+2| + |1012x+3|=2024x`
`<=>1011x+2+1012x+3=2024x`
`<=>2023x+5=2024x`
`=>x=5`
Vậy `x=5`
`2024x - |1011x+2|=|1012x+3|`
`<=> |1011x+2| + |1012x+3|=2024x`
Vì `{(|1011x+2| >=0),( |1012x+3| >=0):}`
`=>2024x >= 0`
`=>x>=0` nên `:`
` |1011x+2| + |1012x+3|=2024x`
`<=>1011x+2+1012x+3=2024x`
`<=>2023x+5=2024x`
`=>x=5`
Vậy `x=5`
giải phương trình ngiệm nguyên x^5 + 2024x = 5^y + 1
√(2+√3) +√(2+√(2+√3)+√(2*√(2+√(2+√3) + √(2-√2+√(2+√3)
√(2+√3) +√(2+√(2+√3)+√(2*√(2+√(2+√3) + √(2-√2+√(2+√3)
√ (2+√ 3)*√ (2+√(2+√ 3))*√(2+√(2+√(2+√3)))*√(2-√(2+√(2+√3)))
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
có ai biết giải bài toán này k giúp mình với ?
1,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}}\)
2,\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
3,\(\dfrac{3}{\sqrt{6}-\sqrt{3}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
4,\(\left(\sqrt{\dfrac{2}{3}-\sqrt{\dfrac{3}{2}}+\dfrac{5}{\sqrt{6}}}\right):\dfrac{6-\sqrt{6}}{1-\sqrt{6}}\)
5,\(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\times\left(\sqrt{3}+\sqrt{2}\right)\)
6,\(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
7, \(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
8,\(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
9,\(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
10,\(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}\)
11,\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}+\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
12,\(\dfrac{\sqrt{3}+2\sqrt{2}+\sqrt{3}-2\sqrt{2}}{\sqrt{3}+2\sqrt{2}-\sqrt{3}-2\sqrt{2}}\)
1) \(\dfrac{2}{\sqrt{5}-2}+\dfrac{-2}{\sqrt{5}+2}\)
2) \(\dfrac{4}{1-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
3) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3-\sqrt{2}}{3+\sqrt{2}}\)
4) \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}-3}{\sqrt{3}+1}\)
5) \(\dfrac{\sqrt{5}+\sqrt{6}}{\sqrt{5}-\sqrt{6}}+\dfrac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}\)
\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
a/ (√10+√2) (6-2√5)√(3+√5)
b/ √(13-√160) - √(53-4√90)
c/ √(10+√24+√40+√60)
d/ (√2+√3+√6+√8+√16)/(√2+√3+√4)
e/ [√216/3-(2√3-√6)/(√8-2)] ×1/√6
f/ 1/(√2-√3) × √[(3√2-2√3)/(3√2+2√3)]
g/ 1/(√1+√2) + 1/(√2+√3) + ......+ 1/(√2017+√2018)
\(x^3=\left(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\right)^3=\sqrt[3]{5+2\sqrt{6}}^3\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)^2}.\sqrt[3]{5-2\sqrt{6}}+3\sqrt[3]{5+2\sqrt{6}}.\sqrt[3]{\left(5-2\sqrt{6}\right)^2}+\sqrt[3]{5-2\sqrt{6}}^3\)
\(=5+2\sqrt{6}+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5+2\sqrt{6}}\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5-2\sqrt{6}}+5-2\sqrt{6}\)
\(=5+5+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5-2\sqrt{6}}\)
\(=10+ 3\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{5-2\sqrt{6}}\)
p/s : có bạn hỏi nên mình đăng , các bạn đừng report nhé