https://www.google.com/search?q=2018%E2%88%9A2%E2%88%92%E2%88%9Ax%E2%88%921&oq=2018%E2%88%9A2%E2%88%92%E2%88%9Ax%E2%88%921&aqs=chrome..69i57.324j0j7&sourceid=chrome&ie=UTF-8
??
https://www.google.com/search?q=2018%E2%88%9A2%E2%88%92%E2%88%9Ax%E2%88%921&oq=2018%E2%88%9A2%E2%88%92%E2%88%9Ax%E2%88%921&aqs=chrome..69i57.324j0j7&sourceid=chrome&ie=UTF-8
??
\(\sqrt{x^2+2018}+x>\sqrt{x^2}>=x \)
=> \(\sqrt{x^2+2018}-x>0\)
=> \(\sqrt{x^2+2018}-x\)khác 0
=> (\(\left(\sqrt{x^2+2018}-x\right)\left(\sqrt{x^2+2018}+x\right)\left(\sqrt{y^2+2018}+y\right)=2018\left(\sqrt{x^2+2018}-x\right)\)
<=> 2018\(\left(\sqrt{y^2+2018}+y\right)\)= 2018\(\left(\sqrt{x^2+2018}-x\right)\)
<=> \(\sqrt{y^2+2018}+y=\sqrt{x^2+2018}-x\)
Chứng minh tương tự => \(\sqrt{x^2+2018}+x=\sqrt{y^2+2018}-y\)
Cộng 2 cái vào. Khử được hạng tử. suy ra đc x+y=0 rồi tự làm cưng e nhé
giải phương trình" \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)
Rút gọn biểu thức: A= \(\frac{\sqrt{x-2017-2\sqrt{x-2018}}}{\sqrt{x-2018}-1}\)Với x > 2019
x2+ 2018\(\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+2}\)
Giai phuong trinh
Cho các số thực x,y thỏa mãn điều kiện:
\(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính giá trị của biểu thức: \(M=x^{11}-y^{2018}\)
Giải Phương Trình
a) \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
b)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
c)\(\text{|x-2017|^{2017}+\text{|x-2018|}^{2018}=1}\)
Cho x> 2018 , y> 2018 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
Tính P =\(\frac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}\)
Cho x, y thỏa mãn : \(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính \(M=x^{11}-y^{2018}\)
Tìm điều kiện xác định của các biểu thức sau:
a) 2018\(\sqrt{2-\sqrt{x-1}}\)
b) \(\sqrt{3-\sqrt{x}}\)