\(< =>2^x\left(1+2^3\right)=144.\)
\(\Leftrightarrow2^x=144:9.\)
\(\Leftrightarrow2^x=16\)
\(\Rightarrow x=4\)
2x + 2x+3 = 144
2x + 2x . 23 = 144
2x . 1 + 2x . 23 = 144
2x . ( 1 + 23 ) = 144
2x . ( 1 + 8 ) = 144
2x . 9 = 144
2x = 144 : 9
2x = 16
2x = 24
x = 4
Vậy x = 4
\(2^x+2^{x+3}=144\)
\(\Rightarrow2^x.1+2^x.2^3=144\)
\(\Rightarrow2^x\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144:9=16\)
\(\Rightarrow x=4\)
2x + 2x+3 = 144
<=> 2x.1 + 2x.23 = 144
<=> 2x( 1 + 23 ) = 144
<=> 2x . 9 = 144
<=> 2x = 16
<=> 2x = 24
<=> x = 4
\(2^x+2^{x+3}=144\)
\(< =>2^x+2^x.2^3=144\)
\(< =>2^x\left(1+2^3\right)=144\)
\(< =>2^x=\frac{144}{9}=16\)
\(< =>2^x=2^4< =>x=4\)
\(2^x\)+ \(2^{x+3}\) = \(144\)
\(2^x.1+2^x.2^3=144\)
\(2^x.1+2^x.8=144\)
\(2^x.\left(1+8\right)=144\)
\(2^x.9=144\)
\(2^x=144:9\)
\(2^x=16\)
\(2^x=2^4\)
\(x=4\)
Vậy \(x=4\)