Theo bài ra ta có :
\(112⋮x,140⋮x\Rightarrow x\inƯC\left(112,140\right)\)
\(112=2^4\cdot7\)
\(140=2^2\cdot5\cdot7\)
\(ƯCLN\left(112,140\right)=2^2\cdot7=28\)
\(ƯC\left(112,140\right)=Ư\left(28\right)=\left\{1;28;2;14;4;7\right\}\)
*TỰ LÀM*
112\(⋮\)x
140\(⋮\)x
=>x= UC(112; 140)
Ư(112)={....;14; 16; ...}=> ƯC(112; 140)=14
Ư(140)={...;10; 14; ...}
Mà 10<x<20
=> x=14
Vì \(\hept{\begin{cases}112⋮x\\140⋮x\end{cases}\Rightarrow}x\inƯC\left(112;140\right)\)
Ta có: \(112=2^4.7\)
\(140=2^2.5.7\)
\(\RightarrowƯCLN\left(122;140\right)=2^2.7=28\)
\(\RightarrowƯC\left(122;140\right)=Ư\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)
Mà 10<x<20
\(\Rightarrow x=14\)
Vậy x=14
Vì \(112⋮x,140⋮x\Rightarrow x\inƯC\left(112,140\right)\)
Ta có :
112 = 24 . 7
140 = 22 . 5 . 7
=> ƯCLN(112, 140) = 22 . 7 = 28
=> ƯC(112, 140) = Ư(28) = {1, 2, 4, 7, 14, 28}
Vì 10 < x < 20 nên x = 14.
Vậy x = 14.
=))
Do 112 \(⋮\)x
140 \(⋮\)x
=> x \(\in\)ƯC (112 ; 140)
Lại có ƯCLN (112 ; 140) = 28
=> x \(\in\)Ư (28) = {\(\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\)}
Mà 10 < x < 20 (đề bài) => x = 14
Vậy số cần tìm là 14.
~Study well~
#KSJ