Bài 1: Cho tam giác ABC (AB < AC) nhọn nội tiếp đường tròn tâm O. Trên cạnh BC lần lượt lấy hai điểm D và E (D nằm giữa B và E) sao cho DAB = EAC. Các tia AD và AE tương ứng cắt lại đường trong (O) tại I và J.
a) Chứng minh rằng phân giác của góc BAC đi qua điểm chính giữa của cung nhỏ IJ của đường tròn (O).
b) Chứng minh rằng: Tứ giác BCJI là hình thang cân.
c) Kẻ tiếp tuyến xy của đường tròn (O) tại điểm A. Chứng minh rằng đường thẳng xy cũng là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE.
Bài 2 : Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2 – 3ab.
Cho tam giác ABC cân tại A. Gọi D, E lần lượt lầ trung điểm của AB, AC. M là điểm chuyển động trên đường thẳng DE. Đường tròn tâm O tiếp xúc với AB, AC theo thứ tự tại B,C.Đường tròn đương kính OM cắt đường tròn tâm O tại N,K. Xác định vị trí của điểm M để bán kính đường tròn ngoại tiếp tam giác ANK nhỏ nhất.
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
gửi tới mọi người 2 câu hình cực khó:
Bài 4: Cho tam giác ABC có BAC=90, AB < AC và nội tiếp đường tròn tâm O. Trung tuyến AM của tam giác ABC cắt (O) tại điểm thứ hai D. Tiếp tuyến của (O) tại D cắt đường thẳng BC tại S. Trên cung nhỏ DC của (O) lấy điểm E, đường thẳng SE cắt (O) tại điểm thứ hai là F. Gọi P, Q lần lượt là giao điểm của các đường thẳng AE, AF với BC
a) Chứng minh rằng MODS là tứ giác nội tiếp
b) Chứng minh rằng QB = PC
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với cạnh AC tại D. Gọi M là trung điểm của AC, đường thẳng IM cắt AB tại N. Chứng minh rằng tứ giác IBND là hình bình hành
1) Cho hình bình hành ABCD. ĐƯờng tròn ngoại tiếp tam giác BCD cắt đường chéo Ac tại M. CMR BD là tiếp tuyến của 2 dường tròn ngoại tiếp tam giác AMB và AMD
2) Cho tam giác ABC đều. Từ 1 điểm M trên cạnh AB vẽ 2 đường thẳng song song với 2 cạnh AC, BC,lần lượt cắt BC và AC tại D và E. TÌm vị trí của M trên cạnh AB để chiều dài đoạn DE đạt GTNN
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Cho tam giác ABC cân tại A,
AB =AC =10cm;BC=12cm
. Gọi O là trung điểm của BC. Vẽ
đường tròn tâm (O) tiếp xúc với AB; AC theo thứ tự tại D và E. Điểm M thuộc cung nhỏ DE.
Tiếp tuyến với đường tròn (O) tại M cắt các cạnh AB, AC lần lượt tại P và Q.
a) Tính bán kính của (O).
cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn (O) (AB<AC). Dường tròn tâm O1 tiếp xúc trong với dường tròn (O) tại M, tiếp xúc với 2 cạnh AB, AC lần lượt tại L,K. Gọi E là giao điểm thứ hai của Mk với (O)
a/ c/m ME là tia phân giác góc AMC
b/tia phân giác Mx của góc BMC cắt LK tại I. CM rằng tứ giác MIKC nội tiếp