Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.
Bài 3: Cho hình thang ABCD (AB//CD) có AB=6cm. CD=12 cm. Gọi M là trung điểm của AD. Qua M kẻ đường thẳng song song với hai đáy AB, CD cắt AC, BC lần lượt tại 1 và N. Tính độ dài MI, MN.
giúp mình với
Cho tam giác ABC vuông tại A , đường cao AH , I là trung điểm của AC , IF vuông góc với BC ( F thuộc BC ) , CE vuông góc với AC ( E là giao điểm của CE với tia IF ) . G, K lần lượt là giao điểm của AH, AE với BI .CM :
a, Tam giác IHE = Tam giác ICE , tính góc IHE
b, Tam giác IHE đồng dạng với tam giác BHA ; tam giác BHI đồng dạng với tam giác AHE
c, AE vuông góc với BI
1. Cho tam giác ABC vuông tại A, có AB = 15cm, đường cao AH = 12cm.
a) Tính BH, CH, AC
b) Lấy E thuộc AC, F thuộc BC sao cho CE = 5cm, CF = 4cm. CM : tam giác CEF vuông.
c) CM : CE.CA = CF.CB
2. Cho hình thang ABCD (AB//CD), hai đường chéo cắt nhau tại I.
a) CM : tam giác IAB đồng dạng tam giác ICD.
b) Đường thẳng qua I song song với hai đáy của hình thang cắt AD, BC tại M và N. CM: IM = IN.
c) Gọi K là giao điểm của AD và BC. CM : KI đi qua trung điểm của AB và CD.
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là điểm đối xứng của H qua các cạnh AB, AC.
a) chứng minh BD//CE.
b. Chứng minh tam giác ABD đồng dạng với tam giác ACE.
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.