Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Dũng Bùi

Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.

Trần Tuấn Hoàng
16 tháng 4 2022 lúc 20:21

-Bài khó.

-Bài này mình xem cách giải của bài khá tương đồng với bài này (do GV mình giải).

-OI cắt AC tại E, AD cắt CM tại F, qua M kẻ đường thẳng song song với AC cắt BN tại G.

\(\dfrac{AN}{NC}=\dfrac{AN}{MG}.\dfrac{MG}{NC}=\dfrac{AB}{BM}.\dfrac{OM}{OC}\)

\(\Rightarrow\dfrac{OM}{OC}=\dfrac{BM}{AB}.\dfrac{AN}{NC}=\dfrac{NC}{AB}.\dfrac{AN}{NC}=\dfrac{AN}{AB}\)

\(\Rightarrow\dfrac{CM}{OC}=\dfrac{AN+AB}{AB}\Rightarrow\dfrac{OC}{CM}=\dfrac{AB}{AN+AB}\)

\(\dfrac{MF}{CF}=\dfrac{AM}{AC}\Rightarrow\dfrac{CM}{CF}=\dfrac{AM+AC}{AC}=\dfrac{AB-BM+AN+NC}{AC}=\dfrac{AB+AN}{AC}\)

\(\Rightarrow\dfrac{OC}{CM}.\dfrac{CM}{CF}=\dfrac{AB}{AN+AB}.\dfrac{AN+AB}{AC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{OC}{CF}=\dfrac{AB}{AC}\Rightarrow\dfrac{CE}{AC}=\dfrac{AB}{AC}\Rightarrow CE=AB\)

\(\dfrac{IC}{DC}=\dfrac{CE}{AC}=\dfrac{AB}{AC}=\dfrac{AD}{DC}\Rightarrow IC=AD\)

\(\Rightarrow IC+ID=BD+ID\Rightarrow CD=BI\)


Các câu hỏi tương tự
Ngọc
Xem chi tiết
Ngọc
Xem chi tiết
Thư phương
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Kamato Heiji
Xem chi tiết
PhạmThu Hiền
Xem chi tiết
nguyễn thành đạt
Xem chi tiết
nguyễn thái phúc
Xem chi tiết
PhạmThu Hiền
Xem chi tiết