Ta có: \(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+\frac{1}{\left(x+2\right).\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow-\frac{1}{\left(x+3\right)}=\frac{1}{2020}\)
\(\Rightarrow-\left(x+3\right)=2020\)
\(\Leftrightarrow-x-3=2020\)
\(\Leftrightarrow-x=2023\)
\(\Leftrightarrow x=-2023\)
Vậy \(x=-2023\)
Bài làm:
Ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{-x-3}=\frac{1}{2020}\)
\(\Rightarrow-x-3=2020\Rightarrow x=-2023\)