Theo đề
=> S = \(\frac{1}{100}-\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
= \(\frac{1}{100}-1+\frac{1}{100}\)
= \(-\frac{49}{50}\)
\(=\frac{1}{100}-\left(\frac{1}{2}+\frac{1}{2.3}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{100}-1+\frac{1}{100}\)
\(=\frac{-49}{100}\)