\(A=\left|x-5\right|+\left|x+3\right|\)
\(=\left|5-x\right|+\left|x+3\right|\)
\(\ge\left|5-x+x+3\right|=8\)
Dấu "=" xảy ra <=> \(\left(5-x\right)\left(x+3\right)\ge0\)<=> \(-3\le x\le5\)
Vậy MIN \(A=8\) khi \(-3\le x\le5\)
A = | x - 5 | + | x + 3 | >= | 5 - x + x + 3 | = | 5 + 3 | = 8
Dấu "=" xẩy ra <=> \(\hept{\begin{cases}x-5>0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x>-3\end{cases}\Rightarrow}x>5}\)
Lâu ko làm ko biết đúng ko
Sửa dòng Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-x\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-3\end{cases}\Rightarrow}-3\le x\le5}\)
Sorry
P/s: Đường Quỳnh Giang làm đúng rồi