\(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)+4}{n+1}=2+\frac{4}{n+1}\)
Để \(2+\frac{4}{n+1}\) là số nguyên tố <=> \(\frac{4}{n+1}\) là số nguyên tố
Mà n là số tự nhiên => n + 1 thuộc ước nguyên dương của 4
=> Ư(4) = { 1; 2; 4 }
Với n + 1 = 1 => n = 0 => A = 6 ko là số nguyên tố ( loại )
Với n + 1 = 2 => n = 1 => A = 4 ko là số nguyên tố ( loại )
Với n + 1 = 4 => n = 3 => A = 3 là số nguyên tố ( chọn )
Vậy n = 3 thì A là số nguyên tố
Để a là số nguyên tố thì phân số a tối giản
=} ƯCLN của tử và mẫu là 1
Gọi d = ƯCLN(2n+6,n+1)
Khi đó n+1 chia hết cho d =} 2(n+1) chia hết cho d
=} 2n+2 chia hết cho d
Do đó (2n+6) - (2n+2) chia hết cho d
Hay 2n+6-2n-2 chia hết cho d
=} 4 chia hết cho d =} d£ Ư(4) = { 1;2;4 }
Vì 2n+6 chia hết cho 2 mà n+1 ko chia hết cho 2
=} d khác 2
Mik chỉ làm được đến đây thôi
Phần còn lại bạn tự tìm cách chứng minh d=1 nha
cho mik với
=} là suy ra
£ là thuộc