1) Với x, y, z là các số thực thỏa mãn xy + yz + zx = 13, chứng minh rằng \(21x^2+21y^2+z^2\ge78\)
2) Cho các số thực x, y, z khác 0 thỏa mãn x + y + z = 3xyz, chứng minh rằng\(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
3) Với a, b, c là các số thực dương thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất của P = a3 + 64b3 + c3
1. Tìm 2 số tự nhiên x, y sao cho \(\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\) là số nguyên tố.
2. Cho a, b, c là các số thực dương. Chứng minh \(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
1) tính giá trị của biểu thức C tại x=2014 ; y=1008.
\(C=[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2+y^2-4}{x^2+y+xy+x}]:\frac{x+1}{2x^2+y+2}\)
2) Chứng minh rằng : ( a +b )2(b+c)2 \(\ge\) 4abc ( a+b+c ) với mọi số thực a,b,c
Tìm x,y biết:
a) x^2 - 12x + 35 bé hơn hoặc =0
Cho x+y+xy=15. Tìm GTNN của M= 4 ( x^2+y^4 )
Cho các số thực a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1. CMR: -1/2 bé hơn hoặc bằng ab+ac+bc bé hơn hoặc bằng 1
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
1, Cho x+y=2. Tìm GTLN của bt: P=x4+y4
2, Cho a,b,c là các số dương thỏa mãn a + b + c + ab + bc + ac = 6abc. Tìm GTNN của:
P= \(\frac{1}{a^2}\)+ \(\frac{1}{b^2}\)+ \(\frac{1}{c^2}\)
3, Cho hai số thực không âm thỏa mãn x2+y2 = 4. Tìm GTLN của A = \(\frac{xy}{x+y+2}\)
bài 1:cho các số thực dương a,b,c thỏa mãn abc\(\le1\). cmr \(\frac{a}{b^2}+\frac{b}{c^2}\)+\(\frac{c}{a^2}\ge\)a+b+c\
bài 2: cho các số x2+y2=1. tìm gtln, gtnn của M=\(\sqrt{3}xy+y^2\)